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Abstract The aim of this paper is to show how a Landau

thermodynamic theory might be utilized to study size effects

in ferroelectric thin films on metal substrates via reflectivity

measurements that could be carried out with terahertz radi-

ation, particularly in the far-infrared region. The approach

taken is to minimize a Landau free energy functional that

includes a gradient term to describe the size effects. Landau-

Khalatnikov equations together with Maxwell’s equations

for the electromagnetic field are then solved simultaneously

to describe how the radiation interacts with the film. From

this reflectivity curves can be calculated and related to exper-

imental studies. Attention is paid to how the metal substrate

can influence the reflectivity curves compared to free stand-

ing films without substrates. The significance of the work

lies in the fact that ferroelectric ceramic thin films are be-

coming of increasing technological importance, and films on

metal substrates such as electrodes are of obvious relevance

to applications such as memory devices which rely on ap-

plied electric fields to change the polarization direction. The

main conclusion is that terahertz wave measurements in the

far-infrared provide an informative and sensitive probe of the

size effects and substrate influence.
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1 Introduction

The physical properties of ferroelectric nanostructures are

found to be different from those of bulk materials [1]. Size
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effects in ferroelectric thin films and nanoparticles in par-

ticular, are of much interest because of current applications

in memory devices [2]. Chew et al. [3, 4] have studied the

influence of the polarization on the dynamic properties of

free standing ferroelectric thin films within the framework

of LDG theory by using Landau-Khalatnikov equations to

model the dynamics. This work suggests that terahertz radi-

ation particularly in the far infrared (FIR) is a sensitive probe

of size effects in ferroelectric thin films.

Here a similar approach to that of Chew et al. [3, 4] will be

used. The difference is that now one side of the thin film is at-

tached to a metal substrate. Assuming this to be of very high

conductivity, at the ferroelectric-metal interface most of the

radiation, due to an electromagnetic field penetrating from

the opposite side, will be reflected back into the film and the

transmission coefficient will be close to zero. The main aim

of this paper is to find out how the reflection coefficient be-

haves as a function of frequency for the ferroelectric film on a

metal substrate and to investigate whether useful information

about the size effects can still be measured by terahertz wave

reflection. The behaviour is expected to be quite different

from the free standing films studied by Chew et al. [3, 4]

because of the strong reflection at the ferroelectric-metal

interface.

2 Formalism

The starting point is the Gibbs free energy per unit area for

a ferroelectric film of thickness L and polarization P

F/S =
∫ 0

−L
((1/2)AP2 + (1/4)B P4 + (C/2)(d P/dz)2

− �E · �P) dz + (C/2)(P2(−L)/δ1 + P2(0)/δ2), (1)
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where the integrand is the Landau free-energy density for a

second order transition with A = a(T − T0) and B > 0 (for

simplicity first order transitions are not considered here); T0

is the Curie temperature of the bulk material and the term
�E · �P describes the coupling to an incident electric field. The

C gradient term in the integrand represents the free-energy

cost of spatial variations in P . To find P0, the equilibrium

value of P , it is necessary to minimize the free energy in

Eq. (1) with �E = 0 using the calculus of variations; this leads

to the Euler-Lagrange equation for P ,

C
d2 P

dz2
− AP − BP3 = 0. (2)

The boundary conditions, which come from the second term

in Eq. (1), are

dP/dz − P/δ1 = 0, at z = −L , (3)

dP/dz + P/δ2 = 0, at z = 0. (4)

The extrapolation lengths δ1 and δ2 are allowed to be different

at each boundary since the interfaces are different with z =
−L chosen to be the boundary with the metal and z = 0 the

boundary with the air (assumed to behave like a vacuum)

from which the E field will be incident for the dynamical

equations below. For δ1, δ2 > 0 it can be seen from Eqs. (3)

and (4) that the polarization turns down at the surfaces, so

that the values there are smaller then the bulk polarization;

consequently the critical temperature of the film Tc is smaller

than T0. Negative extrapolation lengths imply an upturn of P
at the corresponding surface, but in this paper only positive

values will be considered.

Equation (2) subject to conditions (3) and (4) can be

solved to find P(z) in terms of elliptic functions. For δ1 = δ2

this has been done in Refs. [5] and [6]. Here the solution

needs to take δ1 �= δ2 in to account. The solution [5] al-

ready given for δ1 = δ2 in terms of elliptic function sn is

still valid since G, the constant of integration that appears

in this solution, is determined by boundary conditions (3)

and (4). The determination of G for these conditions requires

finding a value that simultaneously satisfies both bound-

ary conditions. This can be done in a two-step numerical

process [7].

The dynamic coupling of the time dependent electro-

magnetic field E is described using a Landau-Khalatnikov

equation of motion,

m
∂2 P

∂t2
+ γ

∂P

∂t
=−δF

δP
=−

(
C

d2 P

dz2
− AP − BP3

)
, (5)

given in a form suitable for damped oscillatory systems

since this describes the soft mode observed in many dis-

placive ferroelectrics such as BaTiO2 (later we will choose

parameter values for BaTiO2 for illustration). In the equa-

tion of motion m and γ are inertial and damping parameters

respectively.

In this paper the incident field is assumed not to be very

intense, which is fitting for FIR measurements as sources

in this region are usually quite weak. Therefore only lin-

ear terms in Eq. (5) need to be considered, which can be

done by linearizing in the small deviation from P0(z) due

to the E field. Also, to avoid depolarization effects P0 is

taken to be in the plane of the film and is taken to lie

along x . Writing �Q for the deviation, the components of
�P are then Px = P0(z) + Qx , Py = Qy and Pz = Qz . Ex-

pressions for the components of the variational derivative,

δF/δPi , i = x, y or z then follow as in Ref. [3]. These

can then be linearized by dropping terms in Q2
i or higher

to give

C
d2 Q̃ j

dz2
+ [

m
(
ω2 − ω2

j

) + iωγ
]
Q̃ j + Ẽ j = 0 (6)

where mω2
x = A + 3BP2

0(z) or mω2
j = A + BP2

0(z), j =
x or y. Here a single frequency ω has been assumed so that

complex representations denoted Q̃ j and Ẽ j can be used via

Q j = (1/2)(Q̃ j (z)e−iωt + Q̃∗
j (z)eiωt ), and similarly for E j .

The relation complementary to Eq. (6) is the driven wave

equation

d2 Ẽi

dz2
+ ε∞

ω2

c2
Ẽi = − ω2

ε0c2
Q̃i , i = x, y or z, (7)

where ε∞ accounts for the contribution of higher-frequency

resonances to the dielectric response. For simplicity in this

paper we will only consider x-polarization: �E = (Ex , 0, 0),

so that �Q = (Qx , 0, 0) and Ẽ j = Q̃ j = ω j = 0, j = y
or z.

The complex optical reflection coefficient at frequency

ω is found by solving Eqs. (6) and (7) for the fields in

the film subject to electromagnetic boundary conditions—

continuity of E and H—together with polarization bound-

ary conditions (3) and (4). Assuming the metal to be of

infinite conductivity implies that at the ferroelectric-metal

boundary z = −L , Ẽx = 0 and no wave is transmitted. The

field in the ferroelectric at the incident surface z = 0 is

matched to the incident and reflected waves. Because the

ωi involve the z-dependent P0(z), the solution of Eqs. (6)

and (7) must in general be found numerically. For the bulk

case when the boundaries are far away (or for the spe-

cial case δ−1
1 = δ−1

2 ) P0(z) = PB = const. and the solution

can be found analytically. Next we will look at the bulk

modes for C = 0 before going on to the full numerical

solution.
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3 Polariton bulk modes

When C = 0 only the usual polariton mode propagates in

the film. It is instructive to study the reflection coefficient

for this case as it gives a qualitative picture of the influence

of the damping parameter γ . With C = 0 Eqs. (6) and (7)

show that Q̃ j ∝ Ẽ j and the solution Ẽ j ∝ exp(±qz), where

q2
1 = ε(ω)ω2/c2 and

ε(ω) = ε∞
ω2

L − ω2 − iωγ/m

ω2
j − ω2 − iωγ/m

, (8)

where ω2
L = ω2

j + 1/ε0ε∞m. These C = 0 modes are the

bulk polaritons, and in particular there is no propagating

mode in the restrahlung region ω2
j < ω < ω2

L . These polari-

ton solutions can be used for a film if it is assumed that

there is no change in polarization near the surfaces so that

P0(z) = PB ∀z in the film. For a free standing film for which

the wave incident from the vacuum side is EI ∝ exp(q0z),

with q0 = ω/c, this implies that the magnitude of the re-

flection coefficient is 1 across the restrahlung, while outside

of the region there is propagation into the film leading to a

transmitted wave and a lowering of the magnitude from its

maximum value of 1. However, here the incident wave is not

only reflected in the restrahlung, but also outside of it due to

the reflection at the ferroelectric-metal boundary. The reflec-

tion coefficient in this case may be calculated by applying the

electromagnetic boundary conditions mentioned above and

the result, when γ = 0, is r = |r | = 1 ∀ω, and for γ ≥ 0

r = −e2iq L
(√

ε(ω) + 1
) + √

ε(ω) − 1

e2iq L
(√

ε(ω) − 1
) + √

ε(ω) + 1
(9)

Fig. 1 Reflection coefficient for bulk polariton case. The following di-

mensionless variables have been used: γ ′ = γ /
√

maTc, ω′ = √
m/aTc,

where c is the speed of light; L ′ = (L/c)
√

aT0/m = 0.3
√

2C0 (corre-

sponds to L ≈ 40 nm; C0 defined in Fig. 2; values for a and m are taken

to be the estimated values for BaTiO3in Ref. [4]). These definitions are

for dimensionless temperature t = T/T0, which is set at t = 0.5 and the

value for BaTiO3 of T0 = 401 K is used for the plots in all the figures

Figure 1 shows plots of |r |2 for various values of a dimen-

sionless representation of γ for the metal substrate case; this

representation and other dimensionless variables used are de-

fined in the caption. For subsequent illustrations an estimate

for BaTiO3 of γ ′ = 0.01, taken from Ref. [4] will be used.

It can be seen that the effect of damping is to reduce the re-

flectivity modulus across the restrahlung without producing

interference fringes; these only become apparent outside of

the region but then die away as the modulus moves towards 1.

Overall the effect becomes more marked as the damping in-

creases. In a free standing film (δ1 = δ2 = δ) it has been

shown [4] that the presence of C �= 0 modes causes fringes

to appear across the restrahlung and furthermore the effect is

distinguishable from the effect of δ−1 �= 0 values that lead

to a z dependent polarization P0(z). So the question now is

what is the nature of these size effects when a metal substrate

is present, and is useful information about them still obtain-

able from reflection measurements in the terahertz region?

To address this we will proceed straight to the numerical

calculation.

4 Numerical calculation

With C, δ−1
1 , δ−1

2 �= 0, P0(z) is given by elliptic functions [5]

and the solution of Eqs. (6) and (7) must be performed nu-

merically. We will use the following notation to describe

the fields in the vacuum and film, remembering that only

x-polarization is being considered:

Ẽx (z) =
{

Ẽ I e−iq0z + ẼReiq0z if z > 0,

ẼF (z) if −L < z < 0.
(10)

The aim is to calculate the reflection coefficient r = ẼR/Ẽ I .

Since there is no analytic expression for ẼF it is necessary

to integrate Eqs. (6) and (7) across the film. Following the

method of Chew et al. [4] it is best to start the integration

from z = −L , since there are no waves propagating in the

metal. The prescribed boundary conditions are

ẼF (−L) = 0 (infinite conductivity in metal), (11)(
d Q̃x/dz − Q̃x/δ1

)
z=−L = 0 (bound. cond. (3)), (12)

ẼF (0) = Ẽ I + ẼR = (1 + r )Ẽ I

(continuity of Ẽx at z = 0), (13)

d ẼF/dz|z=0 = −iq0(Ẽ I − ẼR) = −iq0(1 − r )Ẽ I

(continuity of H̃y at z = 0), (14)(
d Q̃x/dz + Q̃x/δ2

)
z=0

= 0 (bound. cond. (4)). (15)
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Fig. 2 Effect of varying C ′ = C/c2m relative to C ′
0 = 0.00475, the

dimensionless value calculated from the estimates for BaTiO3 of C and

m in Ref. [4]. The film thickness expressed in dimensionless form is

taken to be L ′ = 0.3
√

C ′
0, and t = 0.5. Dimensionless frequencies ω′

x
and ω′

L are scaled in the same way as ω′, defined in Fig. 1

These five boundary conditions are sufficient for solving

the problem: four are needed since Eqs. (6) and (7) are

two coupled second-order equations the solution of which

requires four boundary conditions; a further condition is

required to find r . The values of ẼF (0) and (d ẼF/dz)z=0

are found by integrating Eqs. (6) and (7) from z = −L
to 0; r can then be found by eliminating Ẽ I from Eqs. (13)

and (14).

Since the required boundary conditions are not all pre-

scribed at the same point the numerical solution of Eqs. (6)

and (7) is a boundary value rather than initial value problem.

To deal with this these two equations were expressed as four

first order differential equations (ODEs)—a standard step in

the solution of coupled ODEs. Next, rather than working

further with complex variables for the numerics, the four

coupled ODEs along with boundary conditions Eqs. (11)

and (15) were split into real and imaginary parts; the re-

sulting eight ODEs all in real variables, were then solved

using routines newt and shoot from Ref. [8] which imple-

ment shooting and Newton-Raphson methods. Once the nu-

merical integration of Eqs. (6) and (7) is complete, it is

easy to reconstruct the complex values for the calculation

of r .

The numerical results of the calculation are presented as

graphs of |r |2 versus ω′ for various values of dimensionless

representations, C ′, δ′
1 and δ′

2 (defined in Figs. 1 and 2), of

the size effect parameters. Figure 2 shows the influence of

varying C ′. It can be seen that this effect is noticeable beyond

the restrahlung region 1 < ω′ < 14.1, but the changes within

this region are more pronounced. It is obvious from Fig. 2

that fringes do appear now that C �= 0 modes are present.The

dramatic, close to zero drop in reflection at lower frequencies

is caused by good impedance matching of these to the film

[3], so that very little is reflected at the vacuum-ferroelectric

boundary and the wave reflected from the metal at the oppo-

site boundary interferes constructively with the wave trans-

Fig. 3 The effect of varying dimensionless extrapolation length δ′
2 =

(δ2/c)
√

aT0/m at t = 0.5, with all other parameters for BaTiO3 as given

in Figs. 1 and 2

mitted to the film from the vacuum. At higher frequencies

the impedance matching is not so strong [3]; consequently

more of the incident wave is reflected from the vacuum-

ferroelectric boundary and the drop in reflection lessens as

ω′ increases.

Figure 3 shows the effect of varying δ′
2, the representation

of the extrapolation length at the ferroelectric-metal bound-

ary, relative to a fixed δ′
1 value. This mainly influences the

first part of the restrahlung with changes at higher frequen-

cies less pronounced. Thus the effect is more localized in

frequency than that of changes in C ′. This is not surprising

since C enters the equations more pervasively than δ2, which

only appears in boundary condition (4).

Overall, especially because of the appearance of fringes

across the restrahlung, the reflection curves in Figs. 2 and 3

show that the influence of the size effects is quite distinct from

the influence of damping. Also the individual effect of chang-

ing C ′ and δ2 are distinguishable. The restrahlung region

which is in the FIR, is the most sensitive to these changes.

This suggests that FIR reflection measurements would be

a sensitive probe of size-effects in a ferroelectric film on a

metal substrate. Furthermore, comparison with the reflec-

tion curves characteristic of free standing films in Ref. [4]

in which there is a hill across the restrahlung with fringes

superposed rather than the dip with fringes illustrated here.

So the metal substrate gives a very distinctive signature to

the reflection curves.

5 Conclusion

According to the model calculations here rooted in LDG

theory, terahertz wave reflection measurements ought to be

a sensitive probe of size effects in ferroelectric thin films

on metal substrates. This is of use, for example, because in a

typical memory application metal electrodes may be attached

to the ferroelectric. The FIR restrahlung region would be

the most sensitive; however, particularly for changes in C ′,
higher frequencies are also noticeably affected.
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The character of the reflection curves here has been shown

to be of a very different character to curves for free-standing

films previously studied. This suggests the possibility that

the reflection measurements may also be sensitive to how

well the substrate is bonded to the ferroelectric: the presence

of air gaps might have a large influence on measurements.

After further study this might result in a useful nondestructive

testing technique.

Other future work could include the obvious extension of

treating the metal more realistically by taking into account

the penetration of radiation to a skin depth. Such work is in

progress using the well-known Drude model of electrons in

a metal.
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